z-logo
Premium
Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella
Author(s) -
Hayward Richard D.,
Koronakis Vassilis
Publication year - 1999
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/18.18.4926
Subject(s) - biology , microbiology and biotechnology , actin , membrane ruffling , cytoskeleton , effector , intracellular , cell , biochemistry
Salmonella causes severe gastroenteritis in humans, entering non‐phagocytic cells to initiate intracellular replication. Bacterial engulfment occurs by macropinocytosis, which is dependent upon nucleation of host cell actin polymerization and condensation (‘bundling’) of actin filaments into cables. This is stimulated by contact‐induced delivery of an array of bacterial effector proteins, including the four Sips ( Salmonella invasion proteins). Here we show in vitro that SipC bundles actin filaments independently of host cell components, a previously unknown pathogen activity. Bundling is directed by the SipC N‐terminal domain, while additionally the C‐terminal domain nucleates actin polymerization, an activity so far known only in eukaryotic proteins. The ability of SipC to cause actin condensation and cytoskeletal rearrangements was confirmed in vivo by microinjection into cultured cells, although as SipC associates with lipid bilayers it is possible that these activities are normally directed from the host cell membrane. The data suggest a novel mechanism by which a pathogen directly modulates the cytoskeletal architecture of mammalian target cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here