z-logo
Premium
Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome
Author(s) -
Loo Melinda A.,
Jensen Timothy J.,
Cui Liying,
Hou Yuexian,
Chang XiuBao,
Riordan John R.
Publication year - 1998
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/17.23.6879
Subject(s) - biology , proteasome , hsp90 , degradation (telecommunications) , microbiology and biotechnology , ubiquitin , proteolysis , biochemistry , heat shock protein , enzyme , gene , computer science , telecommunications
Maturation of wild‐type CFTR nascent chains at the endoplasmic reticulum (ER) occurs inefficiently; many disease‐associated mutant forms do not mature but instead are eliminated by proteolysis involving the cytosolic proteasome. Although calnexin binds nascent CFTR via its oligosaccharide chains in the ER lumen and Hsp70 binds CFTR cytoplasmic domains, perturbation of these interactions alone is without major influence on maturation or degradation. We show that the ansamysin drugs, geldanamycin and herbimycin A, which inhibit the assembly of some signaling molecules by binding to specific sites on Hsp90 in the cytosol or Grp94 in the ER lumen, block the maturation of nascent CFTR and accelerate its degradation. The immature CFTR molecule was detected in association with Hsp90 but not with Grp94, and geldanamycin prevented the Hsp90 association. The drug‐enhanced degradation was decreased by lactacystin and other proteasome inhibitors. Therefore, consistent with other examples of countervailing effects of Hsp90 and the proteasome, it would seem that this chaperone may normally contribute to CFTR folding and, when this function is interfered with by an ansamycin, there is a further shift to proteolytic degradation. This is the first direct evidence of a role for Hsp90 in the maturation of a newly synthesized integral membrane protein by interaction with its cytoplasmic domains on the ER surface.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here