z-logo
Premium
Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6‐hydroxymethyl‐7,8‐dihydropterin pyrophosphokinase/7,8‐dihydropteroate synthase localized in mitochondria
Author(s) -
Rébeillé Fabrice,
Macherel David,
Mouillon JeanMarie,
Garin Jérome,
Douce Roland
Publication year - 1997
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/16.5.947
Subject(s) - biology , dihydropteroate synthase , transit peptide , biochemistry , peptide sequence , atp synthase , phosphofructokinase 2 , amino acid , biosynthesis , enzyme , complementary dna , mitochondrial matrix , microbiology and biotechnology , chloroplast , gene , cytosol , plasmodium falciparum , pyrimethamine , malaria , immunology , plastid
In pea leaves, the synthesis of 7,8‐dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6‐hydroxymethyl‐7,8‐dihydropterin pyrophosphokinase/7,8‐dihydropteroate synthase enzyme, which represented 0.04–0.06% of the matrix proteins. The enzyme had a native mol. wt of 280–300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8‐dihydropteroate synthase domain of the protein was Mg 2+ ‐dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated M r of 56 454 Da. Comparison of the deduced amino acid sequence with the N‐terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated M r of the mature protein was 53 450 Da. Southern blot experiments suggested that a single‐copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8‐dihydropteroate synthesis in higher plant cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here