Premium
Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase
Author(s) -
Leberer Ekkehard,
Wu Cunle,
Leeuw Thomas,
FourestLieuvin Anne,
Segall Jeffrey E,
Thomas David Y
Publication year - 1997
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1093/emboj/16.1.83
Subject(s) - biology , yeast , biochemistry , microbiology and biotechnology , saccharomyces cerevisiae
Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65 PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen‐activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho‐like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino‐terminal, non‐catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G‐protein‐mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell–cell adhesion during conjugation. Subcellular localization of wild‐type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins.