The Use of Optical Coherence Tomography to Demonstrate Dark and Light Adaptation in a Live Moth
Author(s) -
Simon Berry
Publication year - 2022
Publication title -
environmental entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.749
H-Index - 89
eISSN - 1938-2936
pISSN - 0046-225X
DOI - 10.1093/ee/nvac044
Subject(s) - adaptation (eye) , biology , optical coherence tomography , lepidoptera genitalia , pupil , process (computing) , optics , computer vision , coherence (philosophical gambling strategy) , light pollution , optometry , artificial intelligence , computer science , neuroscience , ecology , physics , medicine , quantum mechanics , operating system
To work effectively, the eyes of nocturnal insects have a problem they must overcome. During the night, the light levels are low, so their eyes need to be very sensitive; but they also need a way of adapting to environmental light conditions, and protecting those sensitive organs, if a bright light is encountered. Human eyes have a pupil that changes size to regulate light input to the eye. Moths (Lepidoptera) use a light absorbing pigment that moves position to limit the light within the eye. This pigment migration is difficult to record because it is a dynamic process and will only occur in a live moth. This paper presents the first use of Ocular Coherence Tomography as a method of viewing anatomical detail in a compound eye. This is noninvasive and does not harm the insect. To demonstrate the effectiveness, this article documents the dynamic process of light adaptation within a moth's eye.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom