z-logo
open-access-imgOpen Access
Physiological impacts of temperature variability and climate warming in hellbenders (Cryptobranchus alleganiensis)
Author(s) -
Kimberly A. Terrell,
Richard P. Quintero,
Veronica Acosta Galicia,
Ed Bronikowski,
Matthew J. Evans,
John D. Kleopfer,
Suzan Murray,
James B. Murphy,
Bradley D. Nissen,
Brian Gratwicke
Publication year - 2021
Publication title -
conservation physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.942
H-Index - 37
ISSN - 2051-1434
DOI - 10.1093/conphys/coab079
Subject(s) - biology , climate change , ecology
Cold-adapted hellbender salamanders that inhabit cool mountain streams are expected to fare poorly under warmer projected climate scenarios. This study investigated the physiological consequences of long-term, naturalistic temperature variation on juvenile hellbenders under simulated current and warmer (+1.6 C) climates vs. controlled steady temperatures. Mean temperature and temperature variability were both important predictors of growth as indicated by monthly body mass change (%), stress as indicated by neutrophil:lymphocyte (N:L) ratio and bacteria-killing ability of blood. Cold exposure in hellbenders was associated with weight loss, increased N:L ratios and reduced Escherichia coli killing ability of blood, and these effects were less pronounced under a warmer climate scenario. These observations suggest that cold periods may be more stressful for hellbenders than previously understood. Growth rates peaked in late spring and late fall around 14–17°C. Hellbenders experiencing warmer simulated climates retained body condition better in winter, but this was counter-balanced by a prolonged lack of growth in the 3-month summer period leading up to the fall breeding season where warmer simulated conditions resulted in an average loss of −0.6% body mass/month, compared to a gain +1.5% body mass/month under current climate scenario. Hellbenders can physiologically tolerate projected warmer temperatures and temperature fluctuations, but warmer summers may cause animals to enter the fall breeding season with a caloric deficit that may have population-level consequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom