Burst suppression uncovers rapid widespread alterations in network excitability caused by an acute seizure focus
Author(s) -
Jyun-you Liou,
Eliza Baird-Daniel,
Mingrui Zhao,
Andy Daniel,
Catherine A. Schevon,
Hongtao Ma,
Theodore H. Schwartz
Publication year - 2019
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awz246
Subject(s) - neuroscience , burst suppression , thalamus , focus (optics) , somatosensory system , epilepsy , bursting , electroencephalography , seizure threshold , psychology , medicine , physics , anticonvulsant , optics
Burst suppression is an electroencephalogram pattern of globally symmetric alternating high amplitude activity and isoelectricity that can be induced by general anaesthetics. There is scattered evidence that burst suppression may become spatially non-uniform in the setting of underlying pathology. Here, we induced burst suppression with isoflurane in rodents and then created a neocortical acute seizure focus with injection of 4-aminopyridine (4-AP) in somatosensory cortex. Burst suppression events were recorded before and after creation of the focus using bihemispheric wide-field calcium imaging and multielectrode arrays. We find that the seizure focus elicits a rapid alteration in triggering, initiation, and propagation of burst suppression events. Compared with the non-seizing brain, bursts are triggered from the thalamus, initiate in regions uniquely outside the epileptic focus, elicit marked increases of multiunit activity and propagate towards the seizure focus. These findings support the rapid, widespread impact of focal epilepsy on the extended brain network.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom