z-logo
open-access-imgOpen Access
Plasma tau/amyloid-β1–42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease
Author(s) -
JongChan Park,
Sun-Ho Han,
Dahyun Yi,
Min Soo Byun,
Jun Ho Lee,
Sukjin Jang,
Kang Ko,
So Yeon Jeon,
YunSang Lee,
Yu Kyeong Kim,
Dong Young Lee,
Inhee MookJung
Publication year - 2018
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awy347
Subject(s) - neurodegeneration , alzheimer's disease , neuroscience , disease , amyloid (mycology) , amyloid β , psychology , medicine , pathology
One of the hallmarks of Alzheimer's disease is abnormal deposition of tau proteins in the brain. Although plasma tau has been proposed as a potential biomarker for Alzheimer's disease, a direct link to brain deposition of tau is limited. Here, we estimated the amount of in vivo tau deposition in the brain by PET imaging and measured plasma levels of total tau (t-tau), phosphorylated tau (p-tau, T181) and amyloid-β1-42. We found significant correlations of plasma p-tau, t-tau, p-tau/amyloid-β1-42, and t-tau/amyloid-β1-42 with brain tau deposition in cross-sectional and longitudinal manners. In particular, t-tau/amyloid-β1-42 in plasma was highly predictive of brain tau deposition, exhibiting 80% sensitivity and 91% specificity. Interestingly, the brain regions where plasma t-tau/amyloid-β1-42 correlated with brain tau were similar to the typical deposition sites of neurofibrillary tangles in Alzheimer's disease. Furthermore, the longitudinal changes in cerebral amyloid deposition, brain glucose metabolism, and hippocampal volume change were also highly associated with plasma t-tau/amyloid-β1-42. These results indicate that combination of plasma tau and amyloid-β1-42 levels might be potential biomarkers for predicting brain tau pathology and neurodegeneration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom