z-logo
open-access-imgOpen Access
UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy
Author(s) -
Hannah K. Shorrock,
Dinja van der Hoorn,
Penelope J Boyd,
Maica Llavero Hurtado,
Douglas J. Lamont,
Brunhilde Wirth,
James N. Sleigh,
Giampietro Schiavo,
Thomas M. Wishart,
Ewout J. N. Groen,
Thomas H. Gillingwater
Publication year - 2018
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awy237
Subject(s) - spinal muscular atrophy , neuroscience , motor neuron , spinal cord , sensory system , atrophy , biology , medicine , pathology , disease
Deafferentation of motor neurons as a result of defective sensory-motor connectivity is a critical early event in the pathogenesis of spinal muscular atrophy, but the underlying molecular pathways remain unknown. We show that restoration of ubiquitin-like modifier-activating enzyme 1 (UBA1) was sufficient to correct sensory-motor connectivity in the spinal cord of mice with spinal muscular atrophy. Aminoacyl-tRNA synthetases, including GARS, were identified as downstream targets of UBA1. Regulation of GARS by UBA1 occurred via a non-canonical pathway independent of ubiquitylation. Dysregulation of UBA1/GARS pathways in spinal muscular atrophy mice disrupted sensory neuron fate, phenocopying GARS-dependent defects associated with Charcot-Marie-Tooth disease. Sensory neuron fate was corrected following restoration of UBA1 expression and UBA1/GARS pathways in spinal muscular atrophy mice. We conclude that defective sensory motor connectivity in spinal muscular atrophy results from perturbations in a UBA1/GARS pathway that modulates sensory neuron fate, thereby highlighting significant molecular and phenotypic overlap between spinal muscular atrophy and Charcot-Marie-Tooth disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom