Two critical brain networks for generation and combination of remote associations
Author(s) -
David Bendetowicz,
Marika Urbanski,
Béatrice Garcin,
Chris Foulon,
Richard Lévy,
Marie-Laure Bréchemier,
Charlotte Rosso,
Michel Thiebaut de Schotten,
Emmanuelle Volle
Publication year - 2017
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awx294
Subject(s) - library science , political science , humanities , philosophy , computer science
Recent functional imaging findings in humans indicate that creativity relies on spontaneous and controlled processes, possibly supported by the default mode and the fronto-parietal control networks, respectively. Here, we examined the ability to generate and combine remote semantic associations, in relation to creative abilities, in patients with focal frontal lesions. Voxel-based lesion-deficit mapping, disconnection-deficit mapping and network-based lesion-deficit approaches revealed critical prefrontal nodes and connections for distinct mechanisms related to creative cognition. Damage to the right medial prefrontal region, or its potential disrupting effect on the default mode network, affected the ability to generate remote ideas, likely by altering the organization of semantic associations. Damage to the left rostrolateral prefrontal region and its connections, or its potential disrupting effect on the left fronto-parietal control network, spared the ability to generate remote ideas but impaired the ability to appropriately combine remote ideas. Hence, the current findings suggest that damage to specific nodes within the default mode and fronto-parietal control networks led to a critical loss of verbal creative abilities by altering distinct cognitive mechanisms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom