Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels
Author(s) -
YoEl S. Ju,
Sharon Ooms,
Courtney L. Sutphen,
Shan L. Macauley,
Margaret A. Zangrilli,
Gina Jerome,
Anne M. Fagan,
Emmanuel Mignot,
John Zempel,
Jurgen A.H.R. Claassen,
David M. Holtzman
Publication year - 2017
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awx148
Subject(s) - polysomnogram , tauopathy , actigraphy , amyloid precursor protein , medicine , endocrinology , amyloid (mycology) , sleep deprivation , sleep (system call) , slow wave sleep , alzheimer's disease , polysomnography , neurodegeneration , circadian rhythm , pathology , disease , psychiatry , electroencephalography , computer science , operating system , apnea
See Mander et al. (doi:10.1093/awx174) for a scientific commentary on this article.Sleep deprivation increases amyloid-β, suggesting that chronically disrupted sleep may promote amyloid plaques and other downstream Alzheimer's disease pathologies including tauopathy or inflammation. To date, studies have not examined which aspect of sleep modulates amyloid-β or other Alzheimer's disease biomarkers. Seventeen healthy adults (age 35-65 years) without sleep disorders underwent 5-14 days of actigraphy, followed by slow wave activity disruption during polysomnogram, and cerebrospinal fluid collection the following morning for measurement of amyloid-β, tau, total protein, YKL-40, and hypocretin. Data were compared to an identical protocol, with a sham condition during polysomnogram. Specific disruption of slow wave activity correlated with an increase in amyloid-β40 (r = 0.610, P = 0.009). This effect was specific for slow wave activity, and not for sleep duration or efficiency. This effect was also specific to amyloid-β, and not total protein, tau, YKL-40, or hypocretin. Additionally, worse home sleep quality, as measured by sleep efficiency by actigraphy in the six nights preceding lumbar punctures, was associated with higher tau (r = 0.543, P = 0.045). Slow wave activity disruption increases amyloid-β levels acutely, and poorer sleep quality over several days increases tau. These effects are specific to neuronally-derived proteins, which suggests they are likely driven by changes in neuronal activity during disrupted sleep.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom