z-logo
open-access-imgOpen Access
Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis
Author(s) -
Candice C. Poon,
Susobhan Sarkar,
V. Wee Yong,
John J. Kelly
Publication year - 2017
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/aww355
Subject(s) - microglia , glioblastoma , tumor microenvironment , u87 , cancer research , medicine , macrophage , glioma , cancer , immunology , biology , in vitro , immune system , inflammation , biochemistry
Glioblastoma is the most common and most malignant primary adult human brain tumour. Diagnosis of glioblastoma carries a dismal prognosis. Treatment resistance and tumour recurrence are the result of both cancer cell proliferation and their interaction with the tumour microenvironment. A large proportion of the tumour microenvironment consists of an inflammatory infiltrate predominated by microglia and macrophages, which are thought to be subverted by glioblastoma cells for tumour growth. Thus, glioblastoma-associated microglia and macrophages are logical therapeutic targets. Their emerging roles in glioblastoma progression are reflected in the burgeoning research into therapeutics directed at their modification or elimination. Here, we review the biology of glioblastoma-associated microglia and macrophages, and model systems used to study these cells in vitro and in vivo. We discuss translation of results using these model systems and review recent advances in immunotherapies targeting microglia and macrophages in glioblastoma. Significant challenges remain but medications that affect glioblastoma-associated microglia and macrophages hold considerable promise to improve the prognosis for patients with this disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom