z-logo
open-access-imgOpen Access
Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study
Author(s) -
Iris D. Kilsdonk,
Laura E. Jonkman,
Roel Klaver,
Susanne J. van Veluw,
Jaco J.M. Zwanenburg,
Joost P.A. Kuijer,
Petra J. W. Pouwels,
Jos W. R. Twisk,
Mike P. Wattjes,
Peter R. Luijten,
Frederik Barkhof,
Jeroen J.G. Geurts
Publication year - 2016
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/aww037
Subject(s) - magnetic resonance imaging , histopathology , medicine , nuclear medicine , pathology , multiple sclerosis , nuclear magnetic resonance , radiology , physics , psychiatry
The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type I (T2), 11% for type II (FLAIR/T2), 32% for type III (T2*), and 68% for type IV (T2). We conclude that ultra-high field 7 T magnetic resonance imaging more than doubles detection of cortical multiple sclerosis lesions, compared to 3 T magnetic resonance imaging. Unfortunately, (subpial) cortical pathology remains more extensive than 7 T magnetic resonance imaging can reveal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom