Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease
Author(s) -
Laura T. Haas,
Santiago V. Salazar,
Mikhail A. Kostylev,
Ji Won Um,
A Kaufman,
Stephen M. Strittmatter
Publication year - 2015
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awv356
Subject(s) - metabotropic glutamate receptor 3 , biology , metabotropic glutamate receptor 7 , metabotropic glutamate receptor 6 , metabotropic glutamate receptor 1 , metabotropic glutamate receptor , microbiology and biotechnology , metabotropic glutamate receptor 5 , metabotropic glutamate receptor 4 , metabotropic glutamate receptor 8 , glutamate receptor , neuroscience , biochemistry , receptor
Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom