z-logo
open-access-imgOpen Access
Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model
Author(s) -
Sukhvir Wright,
K. Hashemi,
L Stasiak,
Julian Bartram,
Bethan Lang,
Angela Vincent,
A. Louise Upton
Publication year - 2015
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awv257
Subject(s) - neuroscience , antibody , animal model , nmda receptor , medicine , immunology , biology , receptor
Most patients with N-methyl D-aspartate-receptor antibody encephalitis develop seizures but the epileptogenicity of the antibodies has not been investigated in vivo. Wireless electroencephalogram transmitters were implanted into 23 C57BL/6 mice before left lateral ventricle injection of antibody-positive (test) or healthy (control) immunoglobulin G. Mice were challenged 48 h later with a subthreshold dose (40 mg/kg) of the chemo-convulsant pentylenetetrazol and events recorded over 1 h. Seizures were assessed by video observation of each animal and the electroencephalogram by an automated seizure detection programme. No spontaneous seizures were seen with the antibody injections. However, after the pro-convulsant, the test mice (n = 9) had increased numbers of observed convulsive seizures (P = 0.004), a higher total seizure score (P = 0.003), and a higher number of epileptic 'spike' events (P = 0.023) than the control mice (n = 6). At post-mortem, surprisingly, the total number of N-methyl D-aspartate receptors did not differ between test and control mice, but in test mice the levels of immunoglobulin G bound to the left hippocampus were higher (P < 0.0001) and the level of bound immunoglobulin G correlated with the seizure scores (R(2) = 0.8, P = 0.04, n = 5). Our findings demonstrate the epileptogenicity of N-methyl D-aspartate receptor antibodies in vivo, and suggest that binding of immunoglobulin G either reduced synaptic localization of N-methyl D-aspartate receptors, or had a direct effect on receptor function, which could be responsible for seizure susceptibility in this acute short-term model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom