Neural detection of complex sound sequences in the absence of consciousness
Author(s) -
Athina Tzovara,
Alexandre Simonin,
Mauro Oddo,
Andrea O. Rossetti,
Marzia De Lucia
Publication year - 2015
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awv041
Subject(s) - mismatch negativity , neural decoding , unconscious mind , consciousness , psychology , coma (optics) , contrast (vision) , persistent vegetative state , electroencephalography , audiology , sensory system , hypnosis , cognitive psychology , minimally conscious state , decoding methods , neuroscience , medicine , computer science , artificial intelligence , psychoanalysis , telecommunications , physics , alternative medicine , pathology , optics
The neural response to a violation of sequences of identical sounds is a typical example of the brain's sensitivity to auditory regularities. Previous literature interprets this effect as a pre-attentive and unconscious processing of sensory stimuli. By contrast, a violation to auditory global regularities, i.e. based on repeating groups of sounds, is typically detectable when subjects can consciously perceive them. Here, we challenge the notion that global detection implies consciousness by testing the neural response to global violations in a group of 24 patients with post-anoxic coma (three females, age range 45-87 years), treated with mild therapeutic hypothermia and sedation. By applying a decoding analysis to electroencephalographic responses to standard versus deviant sound sequences, we found above-chance decoding performance in 10 of 24 patients (Wilcoxon signed-rank test, P < 0.001), despite five of them being mildly hypothermic, sedated and unarousable. Furthermore, consistently with previous findings based on the mismatch negativity the progression of this decoding performance was informative of patients' chances of awakening (78% predictive of awakening). Our results show for the first time that detection of global regularities at neural level exists despite a deeply unconscious state.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom