Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia
Author(s) -
David C. Perry,
Virginia E. Sturm,
William W. Seeley,
Bruce L. Miller,
Joel H. Kramer,
Howard J. Rosen
Publication year - 2014
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awu075
Subject(s) - frontotemporal dementia , putamen , psychology , globus pallidus , atrophy , neuroscience , reward dependence , insula , dementia , harm avoidance , medicine , basal ganglia , disease , pathology , personality , social psychology , big five personality traits , central nervous system
Behavioural variant frontotemporal dementia is characterized by abnormal responses to primary reward stimuli such as food, sex and intoxicants, suggesting abnormal functioning of brain circuitry mediating reward processing. The goal of this analysis was to determine whether abnormalities in reward-seeking behaviour in behavioural variant frontotemporal dementia are correlated with atrophy in regions known to mediate reward processing. Review of case histories in 103 patients with behavioural variant frontotemporal dementia identified overeating or increased sweet food preference in 80 (78%), new or increased alcohol or drug use in 27 (26%), and hypersexuality in 17 (17%). For each patient, a primary reward-seeking score of 0-3 was created with 1 point given for each target behaviour (increased seeking of food, drugs, or sex). Voxel-based morphometry performed in 91 patients with available imaging revealed that right ventral putamen and pallidum atrophy correlated with higher reward-seeking scores. Each of the reward-related behaviours involved partially overlapping right hemisphere reward circuit regions including putamen, globus pallidus, insula and thalamus. These findings indicate that in some patients with behavioural variant frontotemporal dementia, low volume of subcortical reward-related structures is associated with increased pursuit of primary rewards, which may be a product of increased thalamocortical feedback.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom