In vivo characterization of the early states of the amyloid-beta network
Author(s) -
Jorge Sepulcre,
Mert R. Sabuncu,
Alex Becker,
Reisa A. Sperling,
Keith A. Johnson
Publication year - 2013
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awt146
Subject(s) - precuneus , posterior cingulate , neuroscience , hippocampus , temporal lobe , alzheimer's disease , amyloid (mycology) , amygdala , orbitofrontal cortex , neurodegeneration , psychology , pathology , disease , prefrontal cortex , cortex (anatomy) , medicine , functional magnetic resonance imaging , cognition , epilepsy
Alzheimer's disease is a neurodegenerative disease that is associated with the abnormal accumulation of amyloid-β. Much is known about regional brain atrophy in Alzheimer's disease, yet our knowledge about the network nature of Alzheimer's disease-associated amyloid-β accumulation is limited. We use stepwise connectivity analysis of Pittsburgh Compound B positron emission tomography images to reveal the network properties of amyloid-β deposits in normal elderly subjects and clinical patients with Alzheimer's disease. We found that amyloid-β accumulation in the medial temporal lobe is associated with accumulation in cortical regions such as orbitofrontal, lateral temporal and precuneus/posterior cingulate cortices in Alzheimer's disease. In normal subjects, there was a predominant association between amyloid-β deposits in the hippocampus and the midline prefrontal/orbitofrontal regions, even in those with very low amyloid-β burden. Moreover, the orbitofrontal cortex, amygdala nucleus and hippocampus exhibit hub properties in the amyloid-β network that may be critical to understanding the putative spreading mechanisms of Alzheimer's disease pathology in early stages.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom