z-logo
open-access-imgOpen Access
Parietal substrates for dimensional effects in visual search: evidence from lesion-symptom mapping
Author(s) -
Sandra Utz,
Glyn W. Humphreys,
Magdalena Chechlacz
Publication year - 2013
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awt003
Subject(s) - intraparietal sulcus , supramarginal gyrus , visual search , context (archaeology) , voxel , working memory , psychology , posterior parietal cortex , parietal lobe , neuroscience , superior parietal lobule , lesion , sulcus , inferior parietal lobule , cognitive psychology , cognition , computer science , functional magnetic resonance imaging , artificial intelligence , biology , paleontology , psychiatry
In visual search, the detection of pop-out targets is facilitated when the target-defining dimension remains the same compared with when it changes across trials. We tested the brain regions necessary for these dimensional carry-over effects using a voxel-based morphometry study with brain-lesioned patients. Participants had to search for targets defined by either their colour (red or blue) or orientation (right- or left-tilted), and the target dimension either stayed the same or changed on consecutive trials. Twenty-five patients were categorized according to whether they showed an effect of dimensional change on search or not. The two groups did not differ with regard to their performance on several working memory tasks, and the dimensional carry-over effects were not correlated with working memory performance. With spatial, sustained attention and working memory deficits as well as lesion volume controlled, damage within the right inferior parietal lobule (the angular and supramarginal gyri) extending into the intraparietal sulcus was associated with an absence of dimensional carry-over (P < 0.001, cluster-level corrected for multiple comparisons). The data suggest that these regions of parietal cortex are necessary to implement attention shifting in the context of visual dimensional change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom