z-logo
open-access-imgOpen Access
K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity
Author(s) -
Nancy Mokbel,
Biljana Ilkovski,
Michaela Kreissl,
Massimiliano Memo,
Cy M. Jeffries,
M. Marttila,
VilmaLotta Lehtokari,
Elina Lemola,
Mikaela Grönholm,
Nan Yang,
Dominique Ménard,
Pascale Marcorelles,
Andoni EchanizLaguna,
Jens Reimann,
Mariz Vainzof,
Nicole Monnier,
Gianina Ravenscroft,
Elyshia McNamara,
Kristen L. Nowak,
Nigel G. Laing,
Carina WallgrenPettersson,
Jill Trewhella,
Steven B. Marston,
Coen A. C. Ottenheijm,
Kathryn N. North,
Nigel F. Clarke
Publication year - 2013
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/aws348
Subject(s) - nemaline myopathy , sarcomere , tropomyosin , nebulin , congenital myopathy , actin , skeletal muscle , muscle weakness , biology , myopathy , myofibril , microbiology and biotechnology , medicine , endocrinology , genetics , anatomy , myocyte , muscle biopsy , titin , biopsy
Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of β-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-β-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-β-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom