The differing roles of the frontal cortex in fluency tests
Author(s) -
Gail Robinson,
Tim Shallice,
Marco Bozzali,
Lisa Cipolotti
Publication year - 2012
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/aws142
Subject(s) - fluency , frontal lobe , verbal fluency test , psychology , cognitive psychology , audiology , cognition , frontal cortex , inferior frontal gyrus , neuroscience , neuropsychology , medicine , mathematics education
Fluency tasks have been widely used to tap the voluntary generation of responses. The anatomical correlates of fluency tasks and their sensitivity and specificity have been hotly debated. However, investigation of the cognitive processes involved in voluntary generation of responses and whether generation is supported by a common, general process (e.g. fluid intelligence) or specific cognitive processes underpinned by particular frontal regions has rarely been addressed. This study investigates a range of verbal and non-verbal fluency tasks in patients with unselected focal frontal (n=47) and posterior (n=20) lesions. Patients and controls (n=35) matched for education, age and sex were administered fluency tasks including word (phonemic/semantic), design, gesture and ideational fluency as well as background cognitive tests. Lesions were analysed by standard anterior/posterior and left/right frontal subdivisions as well as a finer-grained frontal localization method. Thus, patients with right and left lateral lesions were compared to patients with superior medial lesions. The results show that all eight fluency tasks are sensitive to frontal lobe damage although only the phonemic word and design fluency tasks were specific to the frontal region. Superior medial patients were the only group to be impaired on all eight fluency tasks, relative to controls, consistent with an energization deficit. The most marked fluency deficits for lateral patients were along material specific lines (i.e. left-phonemic and right-design). Phonemic word fluency that requires greater selection was most severely impaired following left inferior frontal damage. Overall, our results support the notion that frontal functions comprise a set of specialized cognitive processes, supported by distinct frontal regions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom