z-logo
open-access-imgOpen Access
Unilateral pedunculopontine stimulation improves falls in Parkinson's disease
Author(s) -
Elena Moro,
Clement Hamani,
YuYan Poon,
Thamar Al-Khairallah,
Jonathan O. Dostrovsky,
William D. Hutchison,
Andrés M. Lozano
Publication year - 2009
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awp261
Subject(s) - pedunculopontine nucleus , deep brain stimulation , parkinson's disease , subthalamic nucleus , pedunculopontine tegmental nucleus , physical medicine and rehabilitation , medicine , rating scale , stimulation , gait , neuroscience , psychology , anesthesia , physical therapy , disease , brainstem , developmental psychology
Postural instability and falls are a major source of disability in patients with advanced Parkinson's disease. These problems are currently not well addressed by either pharmacotherapy nor by subthalamic nucleus deep-brain stimulation surgery. The neuroanatomical substrates of posture and gait are poorly understood but a number of important observations suggest a major role for the pedunculopontine nucleus and adjacent areas in the brainstem. We conducted a double-blinded evaluation of unilateral pedunculopontine nucleus deep-brain stimulation in a pilot study in six advanced Parkinson's disease patients with significant gait and postural abnormalities. There was no significant difference in the double-blinded on versus off stimulation Unified Parkinson's Disease Rating Scale motor scores after 3 or 12 months of continuous stimulation and no improvements in the Unified Parkinson's Disease Rating Scale part III scores compared to baseline. In contrast, patients reported a significant reduction in falls in the on and off medication states both at 3 and 12 months after pedunculopontine nucleus deep-brain stimulation as captured in the Unified Parkinson's Disease Rating Scale part II scores. Our results suggest that pedunculopontine nucleus deep-brain stimulation may be effective in preventing falls in patients with advanced Parkinson's disease but that further evaluation of this procedure is required.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom