z-logo
open-access-imgOpen Access
Cerebral oxygen and glucose metabolism in patients with mitochondrial m.3243A>G mutation
Author(s) -
Markus M. Lindroos,
Ronald Borra,
Riitta Parkkola,
Suvi Μ. Virtanen,
Virva Lepomäki,
Marco Bucci,
Jere Virta,
Juha O. Rinne,
Pirjo Nuutila,
Kari Majamaa
Publication year - 2009
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awp259
Subject(s) - mutation , mitochondrial dna , medicine , oxygen , biology , endocrinology , mitochondrial encephalomyopathy , carbohydrate metabolism , white matter , chemistry , magnetic resonance imaging , biochemistry , gene , organic chemistry , radiology
The m.3243A>G mutation is the most common pathogenic mutation in mitochondrial DNA. It leads to defective oxidative phosphorylation, decreased oxygen consumption and increased glucose utilization and lactate production in vitro. However, oxygen and glucose metabolism has not been studied in the brain of patients harbouring the m.3243A>G mutation. Therefore, 14 patients with the m.3243A>G mutation, not experiencing acute stroke-like episodes and 14 age-matched controls underwent positron emission tomography using 2-[(18)F]fluoro-2-deoxyglucose, [(15)O]H(2)O and [(15)O]O(2) as the tracers during normoglycaemia. The metabolic rate of oxygen and glucose were determined using a quantitative region of interest analysis. Metabolites in unaffected periventricular tissue were measured using magnetic resonance spectroscopy. We found that the cerebral metabolic rate of oxygen was decreased by 26% (range 18%-29%) in the grey as well as the white matter of patients with the m.3243A>G mutation. A decrease in the metabolic rate of glucose was found with predilection to the posterior part of the brain. No major changes were detected in cerebral blood flow or the number of white matter lesions. Our results show that the m.3243A>G mutation leads to a global decrease in oxygen consumption in the grey matter including areas where no other signs of disease were present.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom