Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy
Author(s) -
Susanna B. Park,
Cindy S.Y. Lin,
Arun V. Krishnan,
David Goldstein,
Michael Friedlander,
Matthew C. Kiernan
Publication year - 2009
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awp219
Subject(s) - oxaliplatin , neurotoxicity , medicine , anesthesia , cumulative dose , sensory system , sensory loss , toxicity , surgery , neuroscience , cancer , colorectal cancer , psychology
Administration of oxaliplatin, a platinum-based chemotherapy used extensively in the treatment of colorectal cancer, is complicated by prominent dose-limiting neurotoxicity. Acute neurotoxicity develops following oxaliplatin infusion and resolves within days, while chronic neuropathy develops progressively with higher cumulative doses. To investigate the pathophysiology of oxaliplatin-induced neurotoxicity and neuropathy, clinical grading scales, nerve conduction studies and a total of 905 axonal excitability studies were undertaken in a cohort of 58 consecutive oxaliplatin-treated patients. Acutely following individual oxaliplatin infusions, significant changes were evident in both sensory and motor axons in recovery cycle parameters (P < 0.05), consistent with the development of a functional channelopathy of axonal sodium channels. Longitudinally across treatment (cumulative oxaliplatin dose 776 +/- 46 mg/m(2)), progressive abnormalities developed in sensory axons (refractoriness P < or = 0.001; superexcitability P < 0.001; hyperpolarizing threshold electrotonus 90-100 ms P < or = 0.001), while motor axonal excitability remained unchanged (P > 0.05), consistent with the purely sensory symptoms of chronic oxaliplatin-induced neuropathy. Sensory abnormalities occurred prior to significant reduction in compound sensory amplitude and the development of neuropathy (P < 0.01). Sensory excitability abnormalities that developed during early treatment cycles (cumulative dose 294 +/- 16 mg/m(2) oxaliplatin; P < 0.05) were able to predict final clinical outcome on an individual patient basis in 80% of patients. As such, sensory axonal excitability techniques may provide a means to identify pre-clinical oxaliplatin-induced nerve dysfunction prior to the onset of chronic neuropathy. Furthermore, patients with severe neurotoxicity at treatment completion demonstrated greater excitability changes (P < 0.05) than those left with mild or moderate neurotoxicity, suggesting that assessment of sensory excitability parameters may provide a sensitive biomarker of severity for oxaliplatin-induced neurotoxicity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom