z-logo
open-access-imgOpen Access
Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer's disease
Author(s) -
Gwenn S. Smith,
Elisse Kramer,
Yilong Ma,
Carol Hermann,
Vijay Dhawan,
Thomas Chaly,
David Eidelberg
Publication year - 2009
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awn326
Subject(s) - citalopram , galantamine , medicine , posterior cingulate , endocrinology , alzheimer's disease , precuneus , neuroscience , psychology , anesthesia , donepezil , dementia , hippocampus , antidepressant , disease , cognition , functional magnetic resonance imaging
Pre-clinical and human neuropharmacological evidence suggests a role of cholinergic modulation of monoamines as a pathophysiological and therapeutic mechanism in Alzheimer's disease. The present study measured the effects of treatment with the cholinesterase inhibitor and nicotinic receptor modulator, galantamine, on the cerebral metabolic response to the selective serotonin reuptake inhibitor, citalopram. Seven probable Alzheimer's disease patients and seven demographically comparable controls underwent two positron emission tomography (PET) glucose metabolism scans, after administration of a saline placebo infusion (Day 1) and after citalopram (40 mg, IV, Day 2). The scan protocol was repeated in the Alzheimer's disease patients 2 months after titration to a 24 mg galantamine dose. At baseline, cerebral glucose metabolism was reduced in Alzheimer's disease patients relative to controls in right middle temporal, left posterior cingulate and parietal cortices (precuneus and inferior parietal lobule), as expected. Both groups demonstrated acute decreases in cerebral glucose metabolism after citalopram to a greater extent in the Alzheimer's disease patients. In the patients, relative to the controls, citalopram decreased glucose metabolism to a greater extent in middle frontal gyrus (bilaterally), left middle temporal gyrus and right posterior cingulate prior to treatment. Galantamine treatment alone increased metabolism in the right precuneus, right inferior parietal lobule and right middle occipital gyrus. In contrast, during galantamine treatment, citalopram increased metabolism in the right middle frontal gyrus, right post-central gyrus, right superior and middle temporal gyrus and right cerebellum. The combined cerebral metabolic effects of galantamine and citalopram suggest, consistent with preclinical data, a synergistic interaction of cholinergic and serotonergic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom