Impact of optic flow perception and egocentric coordinates on veering in Parkinson's disease
Author(s) -
Solveig Davidsdottir,
Robert Wagenaar,
Daniel Edward Young,
Alice CroninGolomb
Publication year - 2008
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awn237
Subject(s) - parkinson's disease , psychology , audiology , lateralization of brain function , perception , physical medicine and rehabilitation , association (psychology) , spatial disorientation , disease , cognitive psychology , neuroscience , medicine , engineering , simulation , pathology , psychotherapist
Spatial navigation is a complex process requiring integration of visuoperceptual information. The present study examined how visuospatial function relates to navigational veering in Parkinson's disease, a movement disorder in which visuospatial cognition is affected by the degeneration of the basal ganglia and resulting dysfunction of the parietal lobes. We hypothesized that patients whose initial motor symptoms start on the left versus right side of the body (LPD, predominant right-hemisphere dysfunction; RPD, predominant left-hemisphere dysfunction) would display distinct patterns of navigational veering associated with the groups' dissimilar visuospatial profiles. Of particular interest was to examine the association of navigational veering (lateral deviation along the medio-lateral axis) with perception of egocentric coordinates and of radial optic flow patterns, both of which are mediated by the parietal lobes. Thirty-one non-demented Parkinson's disease patients (16 LPD, 15 RPD) and 18 healthy control (HC) adults received visuospatial tests, of whom 23 Parkinson's disease patients and 17 HC also underwent veering assessment. The participants were examined on three visual-feedback navigation conditions: none (eyes closed), natural, and optic flow supplied by a virtual-reality headset. All groups veered to the left when walking with eyes closed, women with Parkinson's disease more so than the other participants. On the navigation assessments with visual feedback, only LPD patients deviated right of centre. On tests of visuospatial function, the perceived midline was shifted rightward in LPD (men and women), increasingly so with the addition of visual input. In contrast, men with RPD showed leftward deviation. RPD patients and HC perceived optic flow in the left hemifield as faster than in the right hemifield, with a trend for the opposite pattern for LPD. Navigational veering in LPD was associated with deviation of the perceived egocentric midline and not with perception of optic flow speed asymmetries, and in RPD it was also associated with visual dependence, though in fact LPD subjects were more visually dependent than those with RPD. Our results indicate that (i) parietal-mediated perception of visual space is affected in Parkinson's disease, with both side of motor symptom onset and gender affecting spatial performance, and (ii) visual input affects veering.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom