z-logo
open-access-imgOpen Access
FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease
Author(s) -
Norman L. Foster,
Judith L. Heidebrink,
Christopher M. Clark,
William J. Jagust,
Steven E. Arnold,
Nancy R. Barbas,
C. S. DeCarli,
Raymond Scott Turner,
Robert A. Koeppe,
Roger Higdon,
Satoshi Minoshima
Publication year - 2007
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awm177
Subject(s) - frontotemporal dementia , dementia , positron emission tomography , medicine , cohen's kappa , neuroimaging , psychology , nuclear medicine , disease , radiology , psychiatry , pathology , machine learning , computer science
Distinguishing Alzheimer's disease (AD) and frontotemporal dementia (FTD) currently relies on a clinical history and examination, but positron emission tomography with [(18)F] fluorodeoxyglucose (FDG-PET) shows different patterns of hypometabolism in these disorders that might aid differential diagnosis. Six dementia experts with variable FDG-PET experience made independent, forced choice, diagnostic decisions in 45 patients with pathologically confirmed AD (n = 31) or FTD (n = 14) using five separate methods: (1) review of clinical summaries, (2) a diagnostic checklist alone, (3) summary and checklist, (4) transaxial FDG-PET scans and (5) FDG-PET stereotactic surface projection (SSP) metabolic and statistical maps. In addition, we evaluated the effect of the sequential review of a clinical summary followed by SSP. Visual interpretation of SSP images was superior to clinical assessment and had the best inter-rater reliability (mean kappa = 0.78) and diagnostic accuracy (89.6%). It also had the highest specificity (97.6%) and sensitivity (86%), and positive likelihood ratio for FTD (36.5). The addition of FDG-PET to clinical summaries increased diagnostic accuracy and confidence for both AD and FTD. It was particularly helpful when raters were uncertain in their clinical diagnosis. Visual interpretation of FDG-PET after brief training is more reliable and accurate in distinguishing FTD from AD than clinical methods alone. FDG-PET adds important information that appropriately increases diagnostic confidence, even among experienced dementia specialists.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom