Astrocytic glycogen accumulation drives the pathophysiology of neurodegeneration in Lafora disease
Author(s) -
Jordi Durán,
Arnau Hervera,
Kia H. Markussen,
Olga Varea,
Iliana LópezSoldado,
Ramon C. Sun,
José Antonio del Rı́o,
Matthew S. Gentry,
Joan J. Guinovart
Publication year - 2021
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awab110
Subject(s) - lafora disease , neurodegeneration , glycogen , biology , astrocyte , neuroscience , pathology , microbiology and biotechnology , disease , endocrinology , central nervous system , medicine , phosphorylation , phosphatase
The hallmark of Lafora disease, a fatal neurodegenerative disorder, is the accumulation of intracellular glycogen aggregates called Lafora bodies. Until recently, it was widely believed that brain Lafora bodies were present exclusively in neurons and thus that Lafora disease pathology derived from their accumulation in this cell population. However, recent evidence indicates that Lafora bodies are also present in astrocytes. To define the role of astrocytic Lafora bodies in Lafora disease pathology, we deleted glycogen synthase specifically from astrocytes in a mouse model of the disease (malinKO). Strikingly, blocking glycogen synthesis in astrocytes—thus impeding Lafora bodies accumulation in this cell type—prevented the increase in neurodegeneration markers, autophagy impairment, and metabolic changes characteristic of the malinKO model. Conversely, mice that over-accumulate glycogen in astrocytes showed an increase in these markers. These results unveil the deleterious consequences of the deregulation of glycogen metabolism in astrocytes and change the perspective that Lafora disease is caused solely by alterations in neurons.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom