z-logo
open-access-imgOpen Access
Influence of somatosensory input on paroxysmal activity in benign rolandic epilepsy with 'extreme somatosensory evoked potentials'
Author(s) -
Paolo Manganotti,
Carlo Miniussi,
E. Santorum,
Michèle Tinazzi,
Claudio Bonato,
Carlo A. Marzi,
Antonio Fiaschi,
Bernardo Dalla Bernardina,
G. Zanette
Publication year - 1998
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/121.4.647
Subject(s) - stimulation , somatosensory system , somatosensory evoked potential , neuroscience , scalp , electroencephalography , stimulus (psychology) , epilepsy , psychology , peripheral , evoked potential , electrophysiology , medicine , anatomy , psychotherapist
We studied six patients suffering from benign rolandic epilepsy of childhood with central temporal spikes who presented so-called 'extreme somatosensory evoked potentials (SEPs)' following peripheral somatosensory stimulation. Stimuli were delivered to the fingers of one hand using both a triggered tendon hammer and low-intensity electrical stimulation. The electrical stimulation was delivered in sequences in different conditions (i.e. random order, 1, 3 and 10 Hz). Both tapping and electrical stimulation produced scalp evoked potentials in all subjects, characterized by a spike followed by a slow wave, similar in morphology and scalp distribution to the spontaneously occurring spikes. This paroxysmal activity was sensitive to stimulus rate; the number of evoked spikes was inversely related to the frequency of stimulation, being maximal at 1 Hz and disappearing at high frequencies (10 Hz). Spontaneous spikes disappeared during high-frequency stimulation but were present during low-frequency stimulation. Averaged SEPs at 3-Hz stimulation showed a late high-amplitude component, identical in morphology and distribution to the single evoked spike. We therefore conclude that, in these subjects, the so-called 'extreme SEPs' are evoked spikes and that evoked and spontaneous spikes share common cortical sensorimotor generators. The evidence that these generators can be influenced by afferent input provides important information regarding the functional mechanisms involved in modulating cortical excitability in benign rolandic epilepsy. Moreover, we suggest that peripheral electrical stimulation can be used as an additional activation test in this kind of epilepsy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom