z-logo
open-access-imgOpen Access
Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping
Author(s) -
Rachel Carroll,
Andrew Lawson,
Shanshan Zhao
Publication year - 2018
Publication title -
biostatistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.493
H-Index - 82
eISSN - 1468-4357
pISSN - 1465-4644
DOI - 10.1093/biostatistics/kxy023
Subject(s) - confounding , causal inference , inference , bayesian probability , outcome (game theory) , bayesian inference , econometrics , computer science , survival analysis , proportional hazards model , statistics , artificial intelligence , mathematics , mathematical economics
The introduction of spatial and temporal frailty parameters in survival models furnishes a way to represent unmeasured confounding in the outcome of interest. Using a Bayesian accelerated failure time model, we are able to flexibly explore a wide range of spatial and temporal options for structuring frailties as well as examine the benefits of using these different structures in certain settings. A setting of particular interest for this work involved using temporal frailties to capture the impact of events of interest on breast cancer survival. Our results suggest that it is important to include these temporal frailties when there is a true temporal structure to the outcome and including them when a true temporal structure is absent does not sacrifice model fit. Additionally, the frailties are able to correctly recover the truth imposed on simulated data without affecting the fixed effect estimates. In the case study involving Louisiana breast cancer-specific mortality, the temporal frailty played an important role in representing the unmeasured confounding related to improvements in knowledge, education, and disease screenings as well as the impacts of Hurricane Katrina and the passing of the Affordable Care Act. In conclusion, the incorporation of temporal, in addition to spatial, frailties in survival analysis can lead to better fitting models and improved inference by representing both spatially and temporally varying unmeasured risk factors and confounding that could impact survival. Specifically, we successfully estimated changes in survival around the time of events of interest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here