
PolarMorphism enables discovery of shared genetic variants across multiple traits from GWAS summary statistics
Author(s) -
von Berg,
Michelle ten Dam,
Sander W. van der Laan,
Jeroen de Ridder
Publication year - 2022
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btac228
Subject(s) - genome wide association study , pleiotropy , biology , trait , single nucleotide polymorphism , genetic association , snp , quantitative trait locus , pairwise comparison , genetics , computational biology , statistics , phenotype , computer science , mathematics , gene , genotype , programming language
Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological processes with an effect on multiple traits or point to a shared etiology between traits. We present PolarMorphism, a new method for the identification of pleiotropic SNPs from genome-wide association studies (GWAS) summary statistics. PolarMorphism can be readily applied to more than two traits or whole trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance from the origin) and theta (angle with the Cartesian x-axis, in the case of two traits). r describes the overall effect of a SNP, while theta describes the extent to which a SNP is shared. r and theta are used to determine the significance of SNP sharedness, resulting in a P-value per SNP that can be used for further analysis.