Fast numerical optimization for genome sequencing data in population biobanks
Author(s) -
Ruilin Li,
Christopher C. Chang,
Yosuke Tanigawa,
Balasubramanian Narasimhan,
Trevor Hastie,
Robert Tibshirani,
Manuel A. Rivas
Publication year - 2021
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btab452
Subject(s) - computer science , solver , lasso (programming language) , sparse approximation , genetic algorithm , sparse matrix , algorithm , representation (politics) , population , biobank , block (permutation group theory) , machine learning , mathematics , bioinformatics , law , gaussian , programming language , biology , physics , demography , geometry , quantum mechanics , sociology , politics , world wide web , political science
Large-scale and high-dimensional genome sequencing data poses computational challenges. General-purpose optimization tools are usually not optimal in terms of computational and memory performance for genetic data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom