PUMA: PANDA Using MicroRNA Associations
Author(s) -
Marieke L. Kuijjer,
Maud Fagny,
Alessandro Marin,
John Quackenbush,
Kimberly Glass
Publication year - 2020
Publication title -
bioinformatics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btaa571
Subject(s) - puma , microrna , computational biology , computer science , gene regulatory network , python (programming language) , regulation of gene expression , biology , gene , bioinformatics , gene expression , genetics , operating system
Conventional methods to analyze genomic data do not make use of the interplay between multiple factors, such as between microRNAs (miRNAs) and the messenger RNA (mRNA) transcripts they regulate, and thereby often fail to identify the cellular processes that are unique to specific tissues. We developed PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to integrate a prior network of miRNA target predictions with target gene co-expression information to model genome-wide gene regulation by miRNAs. We applied PUMA to 38 tissues from the Genotype-Tissue Expression project, integrating RNA-Seq data with two different miRNA target predictions priors, built on predictions from TargetScan and miRanda, respectively. We found that while target predictions obtained from these two different resources are considerably different, PUMA captures similar tissue-specific miRNA-target regulatory interactions in the different network models. Furthermore, the tissue-specific functions of miRNAs we identified based on regulatory profiles (available at: https://kuijjer.shinyapps.io/puma_gtex/) are highly similar between networks modeled on the two target prediction resources. This indicates that PUMA consistently captures important tissue-specific miRNA regulatory processes. In addition, using PUMA we identified miRNAs regulating important tissue-specific processes that, when mutated, may result in disease development in the same tissue.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom