Stomatal development in the context of epidermal tissues
Author(s) -
Keiko U. Torii
Publication year - 2021
Publication title -
annals of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.567
H-Index - 176
eISSN - 1095-8290
pISSN - 0305-7364
DOI - 10.1093/aob/mcab052
Subject(s) - biology , epidermis (zoology) , context (archaeology) , arabidopsis thaliana , trichome , botany , microbiology and biotechnology , guard cell , arabidopsis , developmental biology , gene , mutant , genetics , anatomy , paleontology
Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master regulatory transcription factors that orchestrate cell state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom