Identifying and Alleviating Bias Due to Differential Depletion of Susceptible People in Postmarketing Evaluations of COVID-19 Vaccines
Author(s) -
Rebecca Kahn,
Stephanie J. Schrag,
Jennifer R. Verani,
Marc Lipsitch
Publication year - 2022
Publication title -
american journal of epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.33
H-Index - 256
eISSN - 1476-6256
pISSN - 0002-9262
DOI - 10.1093/aje/kwac015
Subject(s) - spurious relationship , medicine , serology , covid-19 , immunology , antibody , statistics , disease , mathematics , infectious disease (medical specialty)
Recent studies have provided key information about SARS-CoV-2 vaccines’ efficacy and effectiveness (VE). One important question that remains is whether the protection conferred by vaccines wanes over time. However, estimates over time are subject to bias from differential depletion of susceptible individuals between vaccinated and unvaccinated groups. We examined the extent to which biases occur under different scenarios and assessed whether serological testing has the potential to correct this bias. By identifying nonvaccine antibodies, these tests could identify individuals with prior infection. We found that in scenarios with high baseline VE, differential depletion of susceptible individuals created minimal bias in VE estimates, suggesting that any observed declines are likely not due to spurious waning alone. However, if baseline VE was lower, the bias for leaky vaccines (which reduce individual probability of infection given contact) was larger and should be corrected for by excluding individuals with past infection if the mechanism is known to be leaky. Conducting analyses both unadjusted and adjusted for past infection could give lower and upper bounds for the true VE. Studies of VE should therefore enroll individuals regardless of prior infection history but also collect information, ideally through serological testing, on this critical variable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom