z-logo
open-access-imgOpen Access
Protein- and Calcium-Mediated GLP-1 Secretion: A Narrative Review
Author(s) -
Jonathan Watkins,
Françoise Koumanov,
Javier T. Gonzalez
Publication year - 2021
Publication title -
advances in nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.362
H-Index - 90
eISSN - 2156-5376
pISSN - 2161-8313
DOI - 10.1093/advances/nmab078
Subject(s) - incretin , glucagon like peptide 1 , receptor , calcium , hormone , secretion , endocrinology , medicine , biology , chemistry , pharmacology , type 2 diabetes , diabetes mellitus
Glucagon-like peptide 1 (GLP-1) is an incretin hormone produced in the intestine that is secreted in response to nutrient exposure. GLP-1 potentiates glucose-dependent insulin secretion from the pancreatic β cells and promotes satiety. These important actions on glucose metabolism and appetite have led to widespread interest in GLP-1 receptor agonism. Typically, this involves pharmacological GLP-1 mimetics or targeted inhibition of dipeptidyl peptidase-IV, the enzyme responsible for GLP-1 degradation. However, nutritional strategies provide a widely available, cost-effective alternative to pharmacological strategies for enhancing hormone release. Recent advances in nutritional research have implicated the combined ingestion of protein and calcium with enhanced endogenous GLP-1 release, which is likely due to activation of receptors with high affinity and/or sensitivity for amino acids and calcium. Specifically targeting these receptors could enhance gut hormone secretion, thus providing a new therapeutic option. This narrative review provides an overview of the latest research on protein- and calcium-mediated GLP-1 release with an emphasis on human data, and a perspective on potential mechanisms that link potent GLP-1 release to the co-ingestion of protein and calcium. In light of these recent findings, potential future research directions are also presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom