
Rockets, gauges, and pendulums: applying engineering principles to cell biology
Author(s) -
William Sullivan
Publication year - 2019
Publication title -
molecular biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.463
H-Index - 225
eISSN - 1939-4586
pISSN - 1059-1524
DOI - 10.1091/mbc.e19-02-0100
Subject(s) - biology , systems engineering , mindset , function (biology) , synthetic biology , living systems , engineering design process , radar , perspective (graphical) , computer science , engineering , computational biology , artificial intelligence , aerospace engineering , mechanical engineering , ecology , evolutionary biology
From flight to radar to Velcro, biological form and function have inspired engineers for centuries. It is equally valuable to consider whether concepts in engineering might provide insights into core biological processes. To explore this idea, cell cycle checkpoints, biological clocks, and signaling pathways are viewed here from an engineering perspective. Engineering concepts covered include gauge error, the distinction between precision and accuracy, and the Taguchi method of robust design. Also discussed is the Pareto principle, which describes the observation that, in complex systems, a minority of the components (or inputs) are responsible for a majority of the outputs. These concepts enable engineers to manage complexity, both in system design and in operation. Thus, with new techniques and large data sets revealing ever-increasing levels of biological complexity, an engineering mindset may be particularly valuable for the study of living systems.