z-logo
open-access-imgOpen Access
Desiccation tolerance: an unusual window into stress biology
Author(s) -
Douglas Koshland,
Hugo Tapia
Publication year - 2019
Publication title -
molecular biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.463
H-Index - 225
eISSN - 1939-4586
pISSN - 1059-1524
DOI - 10.1091/mbc.e17-04-0257
Subject(s) - desiccation , biology , desiccation tolerance , trehalose , effector , cryptobiosis , microbiology and biotechnology , water stress , ecology , botany , biochemistry
Climate change has accentuated the importance of understanding how organisms respond to stresses imposed by changes to their environment, like water availability. Unusual organisms, called anhydrobiotes, can survive loss of almost all intracellular water. Desiccation tolerance of anhydrobiotes provides an unusual window to study the stresses and stress response imposed by water loss. Because of the myriad of stresses that could be induced by water loss, desiccation tolerance seemed likely to require many established stress effectors. The sugar trehalose and hydrophilins (small intrinsically disordered proteins) had also been proposed as stress effectors against desiccation because they were found in nearly all anhydrobiotes, and could mitigate desiccation-induced damage to model proteins and membranes in vitro. Here, we summarize in vivo studies of desiccation tolerance in worms, yeast, and tardigrades. These studies demonstrate the remarkable potency of trehalose and a subset of hydrophilins as the major stress effectors of desiccation tolerance. They act, at least in part, by limiting in vivo protein aggregation and loss of membrane integrity. The apparent specialization of individual hydrophilins for desiccation tolerance suggests that other hydrophilins may have distinct roles in mitigating additional cellular stresses, thereby defining a potentially new functionally diverse set of stress effectors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here