
Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis
Author(s) -
Yanfang Ye,
I-Ju Lee,
Kurt W. Runge,
Jian-Qiu Wu
Publication year - 2012
Publication title -
molecular biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.463
H-Index - 225
eISSN - 1939-4586
pISSN - 1059-1524
DOI - 10.1091/mbc.e11-09-0800
Subject(s) - cytokinesis , biology , microbiology and biotechnology , septin , guanine nucleotide exchange factor , cell division , schizosaccharomyces , schizosaccharomyces pombe , gtpase , genetics , yeast , saccharomyces cerevisiae , cell
Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.