z-logo
open-access-imgOpen Access
Asymptotic gcd and divisible sequences for entire functions
Author(s) -
Ji Guo,
Julie TzuYueh Wang
Publication year - 2017
Publication title -
transactions of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.798
H-Index - 100
eISSN - 1088-6850
pISSN - 0002-9947
DOI - 10.1090/tran/7435
Subject(s) - mathematics , arithmetic , algebra over a field , pure mathematics , combinatorics
Let f f and g g be algebraically independent entire functions. We first give an estimate of the Nevanlinna counting function for the common zeros of f n − 1 f^n-1 and g n − 1 g^n-1 for sufficiently large n n . We then apply this estimate to study divisible sequences in the sense that f n − 1 f^n-1 is divisible by g n − 1 g^n-1 for infinitely many n n . For the first part of establishing our gcd estimate, we need to formulate a truncated second main theorem for effective divisors by modifying a theorem from a paper by Hussein and Ru and explicitly computing the constants involved for a blowup of P 1 × P 1 \mathbb {P}^1\times \mathbb {P}^1 along a point with its canonical divisor and the pull-back of vertical and horizontal divisors of P 1 × P 1 \mathbb {P}^1\times \mathbb {P}^1 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom