z-logo
open-access-imgOpen Access
On Gevrey vectors of L. Hörmander’s operators
Author(s) -
Makhlouf Derridj
Publication year - 2017
Publication title -
transactions of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.798
H-Index - 100
eISSN - 1088-6850
pISSN - 0002-9947
DOI - 10.1090/tran/7387
Subject(s) - mathematics , pure mathematics , mathematical analysis , calculus (dental) , medicine , orthodontics
We study the regularity of Gevrey vectors of L. Hörmander’s operators: P = ∑ j = 1 m X j 2 + X 0 + c , \begin{equation*} P=\sum _{j=1}^{m} X_j^2+X_0+c, \end{equation*} where X 0 X_0 , X 1 X_1 , …, X m X_m are real vector fields in an open set Ω ⊂ R n \Omega \subset \mathbb {R}^n and c c is a smooth function. More precisely, we prove the following: If the coefficients of P P are in the Gevrey class G k ( Ω ) G^k(\Omega ) , k ∈ N k\in \mathbb N , k ≥ 1 k\geq 1 , and P P satisfies the following estimate with p / q p/q rational, 0 > p ≤ q 0>p\leq q : | | v | | p / q 2 ≤ C ( | ( P v , v ) | + | | v | | 2 ) , ∀ v ∈ D ( Ω 0 ) , \begin{eqnarray} ||v ||^2_{p/q}\leq C(|(Pv,v)|+||v ||^2), \; \forall v \in \mathcal D(\Omega _0), \end{eqnarray} for some open subset Ω 0 ⊂ Ω 0 ¯ ⊂ Ω \Omega _0\subset \overline {\Omega _0}\subset \Omega , then G k ( P , Ω 0 ) ⊂ G k q p ( Ω 0 ) G^k(P, \Omega _0)\subset G^{k\frac {q}{p}}(\Omega _0) . This provides in particular a local version of a recent result of N. Braun Rodrigues, G Chinni, P. D. Cordaro, and M. R. Jahnke, giving a global such result, with k ≥ 1 k\geq 1 not necessarily integer, for Hörmander’s operators on a torus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom