z-logo
open-access-imgOpen Access
Maximal operators associated with some singular submanifolds
Author(s) -
Yaryong Heo,
Sunggeum Hong,
Chan Yang
Publication year - 2016
Publication title -
transactions of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.798
H-Index - 100
eISSN - 1088-6850
pISSN - 0002-9947
DOI - 10.1090/tran/6785
Subject(s) - mathematics , pure mathematics , singular integral operators , mathematical analysis , operator theory , fourier integral operator
Let U \mathrm {U} be a bounded open subset of R d \mathbb {R}^d and let Ω \Omega be a Lebesgue measurable subset of U \mathrm {U} . Let γ = ( γ 1 , ⋯ , γ n ) : U ∖ Ω → R n \gamma =(\gamma _1, \cdots , \gamma _n) : \mathrm {U}\setminus \Omega \rightarrow \mathbb {R}^n be a Lebesgue measurable function, and let μ \mu be a Borel measure on R d + n \mathbb {R}^{d+n} defined by ⟨ μ , f ⟩ = ∫ R d f ( y , γ ( y ) ) ψ ( y ) χ U ∖ Ω ( y ) d y , \begin{equation*} \langle \mu , f \rangle =\int _{\mathbb {R}^d} f(y, \gamma (y)) \psi (y)\,\chi _{\mathrm {U}\setminus \Omega }(y)\; dy, \end{equation*} where ψ \psi is a smooth function supported in U \mathrm {U} . In this paper we give some conditions under which the Fourier decay estimates | μ ^ ( ξ ) | ≤ C ( 1 + | ξ | ) − ϵ |\widehat {\mu }(\xi )| \le C (1+|\xi |)^{-\epsilon } hold for some ϵ > 0 \epsilon >0 . As a corollary we obtain the L p L^p -boundedness properties of the maximal operators M S \mathrm {M}_{S} associated with a certain class of possibly non-smooth n n -dimensional submanifolds of R d + n \mathbb {R}^{d+n} , i.e., \[ M S f ( x ) = sup r > 0 r − d ∫ | y | > r | f ( x − ( y , γ ( y ) ) ) | χ R d ∖ Ω sym d y , \mathrm {M}_Sf(x)=\sup _{r>0}\, r^{-d}\int _{|y|>r} \big {|}f\big {(}x-(y,\gamma (y))\big {)}\big {|} \,\chi _{\mathbb {R}^d \setminus \Omega _{\text {sym}}} \,dy, \] where Ω sym \Omega _{\text {sym}} is a radially symmetric Lebesgue measurable subset of R d \mathbb {R}^d , γ ( y ) = ( γ 1 ( y ) , ⋯ , γ n ( y ) ) \gamma (y)=(\gamma _1(y), \cdots , \gamma _n(y)) , γ i ( t y ) = t a i γ i ( y ) \gamma _i(t y)=t^{a_i} \gamma _i(y) for each t > 0 t>0 where a i ∈ R a_i \in \mathbb {R} , and the function γ i : R d ∖ Ω sym → R \gamma _i : \mathbb {R}^d \setminus \Omega _{\text {sym}} \rightarrow \mathbb {R} satisfies some singularity conditions over a certain subset of R d \mathbb {R}^d . Also we investigate the endpoint ( p a r a b o l i c H 1 , L 1 , ∞ ) (parabolic\; H^1, L^{1,\infty }) mapping properties of the maximal operators M H \mathrm {M}_H associated with a certain class of possibly non-smooth hypersurfaces, i.e., \[ M H f ( x ) = sup r > 0 | ∫ R d f ( x − ( y , γ ( y ) ) ) r − d ψ ( r − 1 y ) d y | , \mathrm {M}_Hf(x)=\sup _{r>0}\left |\int _{\mathbb {R}^d} f\big {(}x-(y,\gamma (y))\big {)} r^{-d} \psi (r^{-1}y)\,dy \right |, \] where the function γ : R d → R \gamma : \mathbb {R}^d \rightarrow \mathbb {R} satisfies some singularity conditions over a certain subset of R d \mathbb {R}^d and γ ( t y ) = t m γ ( y ) \gamma (t y)=t^m \gamma (y) for each t > 0 t>0 where m > 0 m>0 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom