Analytic properties of complex Hermite polynomials
Author(s) -
Mourad E. H. Ismail
Publication year - 2015
Publication title -
transactions of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.798
H-Index - 100
eISSN - 1088-6850
pISSN - 0002-9947
DOI - 10.1090/tran/6358
Subject(s) - mathematics , hermite polynomials , pure mathematics , complex quadratic polynomial , algebra over a field , mathematical analysis , polynomial
We study the complex Hermite polynomials { H m , n ( z , z ¯ ) } \{H_{m,n}(z, \bar z)\} in some detail, establish operational formulas for them and prove a Kibble-Slepian type formula, which extends the Poisson kernel for these polynomials. Positivity of the associated kernels is discussed. We also give an infinite family of integral operators whose eigenfunctions are { H m , n ( z , z ¯ ) } \{H_{m,n}(z,\bar z)\} . Some inverse relations are also given. We give a two dimensional moment representation for H m , n ( z , z ¯ ) H_{m,n}(z,\bar z) and evaluate several related integrals. We also introduce bivariate Appell polynomials and prove that { H m , n ( z , z ¯ ) } \{H_{m,n}(z, \bar z)\} are the only bivariate orthogonal polynomials of Appell type.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom