On a class of sharp multiplicative Hardy inequalities
Author(s) -
D. Guzu,
Thomas Hoffmann-Ostenhof,
Ари Лаптев
Publication year - 2021
Publication title -
st petersburg mathematical journal
Language(s) - English
Resource type - Journals
eISSN - 1547-7371
pISSN - 1061-0022
DOI - 10.1090/spmj/1659
Subject(s) - mathematics , eigenvalues and eigenvectors , multiplicative function , class (philosophy) , pure mathematics , mathematical analysis , constant (computer programming) , type (biology) , legendre polynomials , block (permutation group theory) , combinatorics , ecology , physics , quantum mechanics , artificial intelligence , computer science , biology , programming language
A class of weighted Hardy inequalities is treated. The sharp constants depend on the lowest eigenvalues of auxiliary Schrödinger operators on a sphere. In particular, for some block radial weights these sharp constants are given in terms of the lowest eigenvalue of a Legendre type equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom