z-logo
open-access-imgOpen Access
Optimality of CKP-inequality in the critical case
Author(s) -
Fuchang Gao
Publication year - 2013
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-2013-11825-3
Subject(s) - inequality , mathematics , mathematical economics , calculus (dental) , mathematical analysis , medicine , dentistry
It is proved that the CKP inequality \[ log ⁡ N ( cov ( T ) , 2 ε ) ⪯ 1 ε ∫ ε / 2 ∞ log ⁡ N ( T , r ) d r \sqrt {\log N(\textrm {cov}(T),2\varepsilon )} \preceq \frac 1\varepsilon \int _{\varepsilon /2}^\infty \sqrt {\log N(T,r)} dr \] is optimal in the critical case log ⁡ N ( T , ε ) = O ( ε − 2 | log ⁡ ε | − 2 ) \log N(T,\varepsilon )=O(\varepsilon ^{-2}|\log \varepsilon |^{-2}) as ε → 0 + \varepsilon \to 0^+ .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom