z-logo
open-access-imgOpen Access
Optimality of CKP-inequality in the critical case
Author(s) -
Fuchang Gao
Publication year - 2013
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-2013-11825-3
Subject(s) - algorithm , computer science
It is proved that the CKP inequality \[ log ⁡ N ( cov ( T ) , 2 ε ) ⪯ 1 ε ∫ ε / 2 ∞ log ⁡ N ( T , r ) d r \sqrt {\log N(\textrm {cov}(T),2\varepsilon )} \preceq \frac 1\varepsilon \int _{\varepsilon /2}^\infty \sqrt {\log N(T,r)} dr \] is optimal in the critical case log ⁡ N ( T , ε ) = O ( ε − 2 | log ⁡ ε | − 2 ) \log N(T,\varepsilon )=O(\varepsilon ^{-2}|\log \varepsilon |^{-2}) as ε → 0 + \varepsilon \to 0^+ .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here