Generalized versions of reverse Young inequalities
Author(s) -
İbrahim Halil Gümüş
Publication year - 2021
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15512
Subject(s) - inequality , mathematics , computer science , calculus (dental) , medicine , mathematical analysis , orthodontics
In this note, we obtain generalized versions of reverse Young inequalities as follows: For a 1 , a 2 , … , a n ∈ [ m , M ] a_{1},a_{2},\ldots ,a_{n}\in \left [ m,M\right ] with M ≥ m > 0 M\geq m>0 \[ v 1 a 1 + v 2 a 2 + ⋯ + v n a n ≤ S ( M m ) a 1 v 1 a 2 v 2 … a n v n v_{1}a_{1}+v_{2}a_{2}+\cdots +v_{n}a_{n}\leq S\left ( \frac {M}{m}\right ) a_{1}^{v_{1}}a_{2}^{v_{2}}\ldots a_{n}^{v_{n}} \] and \[ v 1 a 1 + v 2 a 2 + ⋯ + v n a n ≤ max a i ∈ [ m , M ] S ( a i a j ) L ( a i , a j ) + a 1 v 1 a 2 v 2 … a n v n v_{1}a_{1}+v_{2}a_{2}+\cdots +v_{n}a_{n}\leq \underset {a_{i}\in \left [ m,M\right ] }{\max }S\left ( \frac {a_{i}}{a_{j}}\right ) L\left ( a_{i,}a_{j}\right ) +a_{1}^{v_{1}}a_{2}^{v_{2}}\ldots a_{n}^{v_{n}} \] where S ( ⋅ ) S\left ( \cdot \right ) is Specht’s ratio, L ( a i , a j ) L\left ( a_{i,}a_{j}\right ) is logarithmic mean and v i ∈ [ 0 , 1 ] v_{i}\in \left [ 0,1\right ] such that v 1 + v 2 + ⋯ + v n = 1. v_{1}+v_{2}+\cdots +v_{n}=1. Unlike the proof methods used in the articles on Young’s inequality, the proofs of this study are obtained through first order conditions for constrained optimization problems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom