z-logo
open-access-imgOpen Access
Semi-waves with Λ-shaped free boundary for nonlinear Stefan problems: Existence
Author(s) -
Yihong Du,
Changfeng Gui,
Kelei Wang,
Maolin Zhou
Publication year - 2021
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15346
Subject(s) - nonlinear system , stefan problem , boundary (topology) , mathematical analysis , mathematics , physics , geometry , calculus (dental) , medicine , quantum mechanics , dentistry
We show that for a monostable, bistable or combustion type of nonlinear function f ( u ) f(u) , the Stefan problem \[ { a m p ; u t − Δ u = f ( u ) , u > 0 a m p ; a m p ; for     x ∈ Ω ( t ) ⊂ R n + 1 , a m p ; u = 0   and   u t = μ | ∇ x u | 2 a m p ; a m p ; for     x ∈ ∂ Ω ( t ) , \left \{ \begin {aligned} &u_t-\Delta u=f(u),\; u>0 & &\text {for}~~x\in \Omega (t)\subset \mathbb {R}^{n+1},\\ & u=0~\text {and}~u_t=\mu |\nabla _x u|^2 && \text {for}~~x\in \partial \Omega (t), \end {aligned} \right . \] has a traveling wave solution whose free boundary is Λ \Lambda -shaped, and whose speed is κ \kappa , where κ \kappa can be any given positive number satisfying κ > κ ∗ \kappa >\kappa _* , and κ ∗ \kappa _* is the unique speed for which the above Stefan problem has a planar traveling wave solution. To distinguish it from the usual traveling wave solutions, we call it a semi-wave solution. In particular, if α ∈ ( 0 , π / 2 ) \alpha \in (0, \pi /2) is determined by sin ⁡ α = κ ∗ / κ \sin \alpha =\kappa _*/\kappa , then for any finite set of unit vectors { ν i : 1 ≤ i ≤ m } ⊂ R n \{\nu _i: 1\leq i\leq m\}\subset \mathbb R^n , there is a Λ \Lambda -shaped semi-wave with traveling speed κ \kappa , with traveling direction − e n + 1 = ( 0 , . . . , 0 , − 1 ) ∈ R n + 1 -e_{n+1}=(0,...,0, -1)\in \mathbb {R}^{n+1} , and with free boundary given by a hypersurface in R n + 1 \mathbb {R}^{n+1} of the form \[ x n + 1 = ϕ ( x 1 , . . . , x n ) = Φ ∗ ( x 1 , . . . , x n ) ) + O ( 1 )  as  | ( x 1 , . . . , x n ) | → ∞ , x_{n+1}=\phi (x_1,..., x_n)=\Phi ^*(x_1,...,x_n))+O(1)\text { as }|(x_1,..., x_n)|\to \infty , \] where \[ Φ ∗ ( x 1 , . . . , x n ) ≔ − [ max 1 ≤ i ≤ m ν i ⋅ ( x 1 , . . . , x n ) ] cot ⁡ α \Phi ^*(x_1,..., x_n)\colonequals - \left [\max _{1\leq i\leq m} \nu _i\cdot (x_1,..., x_n)\right ]\cot \alpha \] is a solution of the eikonal equation | ∇ Φ | = cot ⁡ α |\nabla \Phi |=\cot \alpha on R n \mathbb R^n .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom