Further improvements of Askey-Steinig’s inequalities for finite sums involving sine and cosine
Author(s) -
Horst Alzer,
Man Kam Kwong
Publication year - 2020
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15337
Subject(s) - sine , trigonometric functions , mathematics , pure mathematics , mathematical analysis , geometry
In 1974, Askey and Steinig proved that for all n ≥ 0 n\geq 0 and x ∈ ( 0 , 2 π ) x\in (0,2\pi ) the trigonometric sums sin ( x / 4 ) 1 + sin ( 5 x / 4 ) 2 + ⋯ + sin ( ( 4 n + 1 ) x / 4 ) n + 1 \begin{equation*} \frac {\sin (x/4)}{1}+\frac {\sin (5x/4)}{2}+\cdots + \frac {\sin ((4n+1)x/4)}{n+1} \end{equation*} and cos ( x / 4 ) 1 + cos ( 5 x / 4 ) 2 + ⋯ + cos ( ( 4 n + 1 ) x / 4 ) n + 1 \begin{equation*} \frac {\cos (x/4)}{1}+\frac {\cos (5x/4)}{2}+\cdots + \frac {\cos ((4n+1)x/4)}{n+1} \end{equation*} are positive. Recently, the Askey-Steinig inequalities were improved by the present authors. In this paper, we further improve these inequalities and provide new sharp upper and lower bounds for the two sums given above.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom