Blow-up rates for a fractional heat equation
Author(s) -
Raphaël Ferreira,
A. de Pablo
Publication year - 2021
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15165
Subject(s) - heat equation , mathematics , mathematical analysis
We study the speed at which nonglobal solutions to the fractional heat equation u t + ( − Δ ) α / 2 u = u p , \begin{equation*} u_t+(-\Delta )^{\alpha /2} u=u^p, \end{equation*} with 0 > α > 2 0>\alpha >2 and p > 1 p>1 , tend to infinity. We prove that, assuming either p > p F ≡ 1 + α / N p>p_F\equiv 1+\alpha /N or u u is strictly increasing in time, then for t t close to the blow-up time T T it holds that ‖ u ( ⋅ , t ) ‖ ∞ ∼ ( T − t ) − 1 p − 1 \|u(\cdot ,t)\|_\infty \sim (T-t)^{-\frac 1{p-1}} . The proofs use elementary tools, such as rescaling or comparison arguments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom