On a Linnik problem for elliptic curves
Author(s) -
Andrzej Dąbrowski,
Jacek Pomykała
Publication year - 2019
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/14589
Subject(s) - elliptic curve , mathematics , supersingular elliptic curve , elliptic curve point multiplication , pure mathematics
Let S ( Q , B ) S(Q,B) denote the number of moduli q ≤ Q q\leq Q for which a primitive character χ \chi mod q q exists such that n χ > B n_{\chi }>B , where n χ n_{\chi } denotes the smallest natural number such that χ ( n ) ≠ 1 \chi (n) \not =1 . Baier showed that for any β > 2 \beta >2 we have S ( Q , ( log Q ) β ) ≪ Q 1 β − 1 + ε S(Q,(\log Q)^{\beta }) \ll Q^{\frac {1}{\beta -1}+\varepsilon } and asked for an analogue of this result for elliptic curves. It is the aim of this note to establish such an analogue.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom